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1. INTRODUCTION

Kergin [3] introduced a natural extension of the Newton form of single
variable interpolation to the case of several variables. An explicit formula is
given by Micchelli and Milman [5]. The main result of this paper is that if
K, .(x, ) is the Kergin interpolant of degree n + m — 1 to the function x"y™
at the n 4+ m points (cos 2kn/(n + m), sin 2kn/(n + m)), 1 <k < n+ m, and
we set

1,m=0(4),

_ +m n+m 0,m=1(4),
N o S L

m m JEY num) m ) )—lm=12 @),

0,m=3(4)

then the P, ,, satisfy the recurrence relation
Pn.m = 2"xpn—l,m + 2ypn,m—l '_Pn—Z.m _-Pn.m—Z

with P, o =1, P, o =x, P, , =», and hence are the “Chebyshev polynomials”
for the disk studied by Reimer [6].

Reimer has shown that, in fact, [P, ,,| < ("5™) on x? + y* < 1 and we thus
obtain the immediate corollary that

[x"y™ — K, o(6p)| <270 modd,
<

2-tmm=2 m even.

Further, we use the properties of Kergin interpolation to derive the
property

akPn,m+k — akPn+k,m
ok axk
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Finally, an explicit formula

{m/2) . n+m
Panlts )= 2 D iR n = 2001

X ym TR (x),

where T)(x) = cos(jcos ' x) is the jth Chebyshev polynomial, is given.

2. KERGIN INTERPOLATION

We give the definition and basic properties of Kergin interpolation using
the approach of Micchelli and Milman [5).

Let Sy denote the N-simplex, Sy = {(€q, €y, €y): 620, X €,=1} and,
for any sequence of N + 1 points, xo, X5 Xy € R", and continuous function
g:R"> R, set

N
f g=f g(Z ekxk>da,dez---de:~.
{xo X, Sy

----- N k=0

Define maps =#,,: C™(R")— P ,,(R"), the polynomials of degree at most m, by

(7, f)x)= (J; d”'f)(x—xo,x——x,,...,x-—x,,,_,),

where d™f is the mth total derivative of f.
We note that in one variable, by the Hermite—Genocchi formula,

(ﬂmf)(x) =f[x0’ Xpseees xm](x T Xgs X Kypeeny X = Xy 1

where f[x,, X, ..., X,,] is the mth divided difference of f at the given points.
Finally, define the map K: C¥(R") » Py(R") by

K=

ﬁMz

T
[

Then Kf is the Kergin interpolant to f at (x,)y. We note that, as an operator,
K is linear and continuous, In one variable Kf provides the Newton form of
the interpolating polynomial.

Remark 2.1. If f=go i for some g in C¥(R) and some linear map
A:R" > R, then Kf is the one-variable polynomial which interpolates g at the
points (A(x,))}, composed with .
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THEOREM 2.2 ([5]). If q is a homogeneous polynomial of degree k,
0< k<N, then

j[ @) KS—f)=0.

THeEOREM 2.3 ([3]). If P is a polynomial of degree N that has the
property of Kf in Theorem 2.2 for any ordering of the points (x,)y, then
P=Kf.

THEOREM 2.4 (Milman and Micchelli [4]). If fis in CN*'(R™), then

(f—Kf)(x)= (j d”“f)(x—xo,...,x—x,v).

[X04eees Xy X]

CoRroLLARY. The map K is a projector.

THEOREM 2.5. If p and q are homogeneous polynomials of degree k,
0< k, and p(0/ox)f=q(0/0x) g for some functions f, g in CY(R"), then
p(6/ox) Kf = q(0/0x) Kg.

Proof. If k > N, both sides are zero, so we assume that k < N. Suppose
that Kf=Py+P,+--+P, and Kg=Q,+0,+:++Qy are the
homogeneous decompositions of Kf and Kg, respectively. We shall show that
p(6/ox) P; = q(0/0x) Q;, 0 j < N.

Using usual multi-index notation, note that, by Theorem 2.2,

alll
PO~ KD
alil
i q(0/ox)(g —Kg)=0

----- X410

for |i| < N — k. Subtracting, we see that

3Ii|

J 7 (p(0/2x) Kf — 9(0/2%) Kg) = 0.
[x0sX14eeey xkeinl OX

Hence there is some point x such that

ali I
557 (P9/0x) Kf — q(5/0x) Kg) = 0.
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Now consider j=N. For |i|=N —k,

3I if
= (p(0/ox) Py — q(0/0x) Qy)
|i]
- 739}7 (p(8/6x) Kf — q(3/x) Kg) =0

at some point x. The first equality follows from the fact that lower degree
terms are differentiated away and the second by the above remark. Hence
p(9/ox) Py — q(d/ox) Qy is a homogeneous polynomial of degree N — k, all
of whose (N — k)th order partials vanish at some point. It is, therefore, iden-
tically zero.

Now consider k<j<N and assume that for ¢>j, p(é/dx)P,—
q(0/0x) Q,=0. Then for |i| =j — k, by this hypothesis,

P ]
=7 (p(6/6%) P, ~ 4(6/0%) 0)

1i]
= %F (p(9/0x) Kf — q(0/0x) Kg).

Again, this last expression is zero at some point and, as before, p(6/0x) P, —
q(0/0x) Q; = 0. The result follows by reverse induction. |

3. KERGIN INTERPOLATION AT EQUALLY SPACED POINTS
oN THE UNIT CIRCLE

As before, let K, , be the Kergin polynomial interpolating x"y™ at the
n+m points (cos 2kn/(n+m), sin2kn/(n+m)), 1<k<n+m An
examination of the formula of Theorem 2.4 reveals that

= 3 [T (x—cos6,) || (y—sinb,), (3.1)

L
Sc<(t,2,..., n+m) ke§ kES
1S1=n

where we have set 8, = 2kn/(n + m). It is surprising that such a formidable
expression has pleasant properties. We set
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sMm+m\, . n n+m
Pre) =200 (" MYy ke ) + (")
1,m=0(4),
0,m=1(4), (3.2)
~1,m=2(4),
0,m=3(4),

and calculate the generating function of these polynomials.

LemMaA 3.3. Ift=(t,,t,), then
Y Pt ) 15 =t Ty((xt, + 15)/It]).

n+m=d

Proof. We first compute Y, ,_g 2" " ("M (x"Y™ — K,y o, ¥)) 1]
t7. By linearity, this expression equals

24-1 % (: )(xt,)" (yt)" — K ((: )(xtl)" (ytz)"')(x,y)

n+m=d
=291 ((xt, + y12)? — K((xt, + yt2)")(x, »))-

We now apply Remark 2.1 to obtain

d
2971 TT ((xty +yt;) — (¢, cos B, + £, sin 8,))

k=1
d
=291t [T (Cet, +ye)/It] — (¢, cos B, + 1, sin 6,)/|t]))
k=1
d
=29"1t|? [ (cos ¢ — (cos 6 cos 6, + sin @ sin 6,)).
k=1

Here, we have set cos ¢ = (xt, + yt,)/|t|, cos § = ¢,/|t|, and sin 6 =t,/|t].
Clearly, this last expression is equal to

d
2971t} T (cos ¢ —cos(8 — 6,)),
k=1
which, for brevity, we refer to as Q(¢). Then

0@ —0)=27"" [t} ﬁ (cos(6 — ¢) — cos(6 — 6,))
k=1

=|t|? (cos d( — ¢) — cos db),



256 LEN BOS

both sides being polynomials in cos(d — ¢) with same degrees, zeros, and
leading coefficients. Hence

Q(p) = |t|? (cos d¢ — cos db),

and our original sum is

)9 (T((xt, + pt)/It]) — Tt /1t)))-

Further,
I,m=0(4),
O,m=1(4),
T (d) (4)
n+m=d nJl-1,m=2(4),
0,m=3(4),

= Re(t, +it,)?
=|t|? Re(t,/|t] + it,/|t])?
= [t|? Re(cos & + i sin §)?,

where we have set cos § =¢,/|t| and sin 6 =1, /|t|.
By de Moivre’s theorem, this simplifies to

|t]7 cos df = |t T,(1,/]t]).

The result follows from the addition of the two sums. §

An immediate consequence of this calculation is that the generating
function satisfies
[¢ o]

Z= Pontity = 3" |t Ty((xt, +y1)/It))

n, 0 d=0

= (1= (xt, + p1))/(1 — 2(xt, + yt;) + |t1?).

We have made use of the fact that the generating function of the Chebyshev
polynomials is known to be

i T (x) t* = (1 —xt)/(1 — 2xt + 17).
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It follows from the generating function that the P, , satisfy the recurrence
relation

Pn,m = 2'xPn—l.m + 2yPn,m—l —Pn-z.m - Pn.m—Z’

Pyo=1, P o=x and Py, =y
The polynomials determined by this relation were studied by Reimer [6]. He
proves the following two theorems:

THEOREM 3.4 ([6]). For x* +y* < 1, [P, (6 )| < (™).

THEOREM 3.5 ([6]). Among all polynomials of the form Q, .(x,y)=
2tm=D(n+my x"y™ + (lower degree terms), max ., ¢, |Q, (%, y)| is least
Jor @y =P, .

The following interesting identity is made use of in the proof of
Theorem 3.5:

LEMMA 3.6 ([6]). We have

cos(m+n)8,m=0(4),
P, .(cos 8, sin ) = (" - ) 2,
nom ’ m ] |—cos(m+n)8,m=2(4),

—sin(m + n) 6, m=3 (4).
Now by formula (3.2) for P, ,, the following is immediate.

THEOREM 3.7. For x? +y*< 1,

-1
n+m—1) m odd,

|xnym _Kn,m(x’y)l < 2”
< 2—(n+m—2)’

m cven.

Also, for more general f, we substitute (3.1) into the error formula of
Theorem 2.4 to obtain

THEOREM 3.8. If fis in CN*'(R") and Kf is the Kergin interpolatnt to f
at the N + 1 points x, = (cos 2kn/(N + 1), sin 2kn/(N + 1)), 0 < k < N, then,
on the unit disk,

3N+lf'

1 N+1
= KN T ( )W

W+ 2"t =\ e

.
oo
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Proaof. By Theorem 2.4,
|(f = Kf)(x)|

dN“f)(x—xo,x—xl,...,x—xN)

[Xgs.00y Xy, X]

aN+lj‘
a+BZ=N-+-l (J'le ----- xx] OX* 3yB)

x Y [[(x—cos8,) ][] (y—sinb,)

S<(0,1,..., N) keS k¢S
1
< <N+1)2—(N—1) aN+ J ll
S P .
a+B=N+1 a Oox 3y O Y[ Xgyeens Xy, X]

The result follows from the computation

j[ 1=1/N+1). 1

seen s XN K]

Now, by noticing that (3/ay*)("*m*+%)x"ym+k = (@/ox*)(" T mtkyx"+ym
and applying Theorem 2.5, it follows immediately that

PROPOSITION 3.9. We have

17 0
Ey_l?Pn,m+k=a_xk_Pn+k,m'

Our last result is an explicit formula for P, ,(x, y).

THEOREM 3.10. We have

Py (%)
[m/2)
+n

= S—‘ —1)* m m—2kp(m—k)
o =1 (n+m—k)2*k! (m — 2k)yy T nw(x)
[n/2] n+m

=3 (= X" 2kpln—
I:O( D (m +n—k)2%k! (n—2k)’ Toina(¥):

Proof. We prove the first formula; the second follows from the fact that
P, w(x,y)="P, ,(y,x). We proceed by induction on m.
For m=0, the right side reduces to T,(x). But P, o(x,y) satisfies

P o(x,y)=2xP,_; o(X,¥) — Ppy_3 o(%: ¥)s Pyoy=1, P y=x

and hence also equals T,(x).
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Now assume that the equation holds for fixed m and all n. Then

aPn,m+1 _ aPn+1,m

oy - 0x
3['%”(_ Iy m+n+1
(n+ 1+ m— k) 25! (m — 2k)!
XY™ TS i ()

tm/21 m+n+tl

= —1)*
,;0 =D (n+ 14+ m—k) 2%k (m — 2k)!
Xy Zkﬂ"ﬁnlﬂk)k(x)
[(m+1)/2]
=£ S (Dt m+r:+1
v = n+m+1—Fk)2%! (m+1—2k)!

m+1-2kgr(m+1—k)
Xy T mii—x (%)

Hence P, ,,,, and the corresponding expressions differ by a polynomial in x
alone. That they are identically equal follows from the computational lemma
below. 1

LeEmMA 3.11. We have
Pn,m(x’ 0) =0, if modd,
=[(-1)*(n+ 2k)/2"k! (n+ k) TR Vex), if m=2k

Proof. The case of m odd follows immediately from the recurrence
relation. For even m, we use induction on n + m. The cases n + m=20, 1 are
immediate. Now it is known that (see, e.g., Rivlin [7, p. 32]).

[r/2] ) .
T =3 W re=p(" ) e

Thus,

(=1 (n + 2k) T®

(n +k) 2kk| n+k( )

[n/2]

+2k
- 1" lf L
N s,

640/37/3-5
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2x)(=1)*(n—1+2k) _,
11 L)

[(n—1)/2] Con—1+2k
= (1) ~1y T
=1 ;go ( )n——l+k—j
—l o _.1 _2‘ .
Sl [ EE
D (=24 26)
(n—2 + k) 2%k! TaZ2kx)
ltn-2)/2] on—2+2k
= (—1)**! o) B e
(1) ,go Sl S Sy
X (n—z;k_j)(n_zzk_zj)2"""""x"‘2'2f, (3.5)
and
=D (n+2k—=1)) k=1
(n +k— 1)2k_|(k_ 1)! 7’:H-k—l(x)
{n/2] —2+2
= (—1 k —1 j—-il-———-———
=1 ,};o( )n+k—1—‘j
SR e EE S

By comparison of coefficients we see that (3.3) = (3.4) + (3.5) + (3.6) and
hence the given formula satisfies the recurrence relation. The result
follows. [
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