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1. INTRODUCTION

Kergin [3] introduced a natural extension of the Newton form of single
variable interpolation to the case of several variables. An explicit formula is
given by Micchelli and Milman [5]. The main result of this paper is that if
Kn,m(x,y) is the Kergin interpolant of degree n + m - 1 to the function xnym
at the n +m points (cos 2kn/(n +m), sin 2kn/(n +m», 1 :::;:; k:::;:; n +m, and
we set

/

1, m == °(4),

P =2n+m- 1 (n+m)(X n m_K )+(n+m) 0,m==I(4),
n.m m y n.m m -1,m==2(4),

0, m == 3 (4),

then the Pn•m satisfy the recurrence relation

with po•o = 1, p t •o =x, PO,t =y, and hence are the "Chebyshev polynomials"
for the disk studied by Reimer [6].

Reimer has shown that, in fact, IPn.ml:::;:; (n~m) on x 2+ y2:::;:; 1 and we thus
obtain the immediate corollary that

Ixnym -Kn.m(x,y)l:::;:; 2- ln + m
-l),

:::;:; 2- 1n + m - 2l,

modd,

m even.

Further, we use the properties of Kergin interpolation to derive the
property
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Finally, an explicit formula
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[m12) n +m
P",m(X,y)= k~O (-It (n+m-k)k!2 k(m-2k)!

X ym-2kr,.~~k2k(X),

where Tix) =cosU cos -I x) is the jth Chebyshev polynomial, is given.

2. KERGIN INTERPOLATION

We give the definition and basic properties of Kergin interpolation using
the approach of Micchelli and Milman [5].

Let SN denote the N-simplex, SN= {(eO,el, ...,eN):el~O, 1:e/= I} and,
for any sequence of N + 1 points, xO' XI"'" xNE IR", and continuous function
g: IR" -t IR, set

Define maps 1rm : Cm(IR") --+ IP m(IR"), the polynomials of degree at most m, by

where dmf is the mth total derivative off
We note that in one variable, by the Hermite-Genocchi formula,

where f[xo' xi''''' xm] is the mth divided difference off at the given points.
Finally, define the map K: eN(IR") -t IPN(IR") by

Then Kfis the Kergin interpolant tofat (XI)~' We note that, as an operator,
K is linear and continuous. In one variable Kf provides the Newton form of
the interpolating polynomial.

Remark 2.1. If f =gOA for some g in eN(IR) and some linear map
A: IR" --+ IR, then Kfis the one-variable polynomial which interpolates g at the
points (A.(XI))~' composed with A..
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THEOREM 2.2 ([5]). If q is a homogeneous polynomial of degree k,
O~k~N, then

f. q(8/8x)(Kf- f) = O.
[xo.·· .. Xk)

THEOREM 2.3 ([3]). If P is a polynomial of degree N that has the
property of Kf in Theorem 2.2 for any ordering of the points (xJ~, then
P=Kf

THEOREM 2.4 (Milman and Micchelli [4]). Iff is in CN+1(lR n), then

(f-Kf)(x)= (f. dN+~)(X-Xo, ...,x-XN)'
[xO ..... XN.X)

COROLLARY. The map K is a projector.

THEOREM 2.5. If p and q are homogeneous polynomials of degree k,
O~k, and p(8/8x)f=q(8/8x)g for some functions f, g in CN(lR n

), then
p(8/8x)Kf= q(8/8x) Kg.

Proof If k >N, both sides are zero, so we assume that k ~ N. Suppose
that Kf= Po +PI + ... +PN and Kg = Qo +Q I + ... + QN are the
homogeneous decompositions of Kf and Kg, respectively. We shall show that
p(8/8x)PJ= q(aj8x) QJ' 0 ~j ~ N.

Using usual multi-index notation, note that, by Theorem 2.2,

f.
81i1
7}T p(8/8x)(f- Kj)

[XO.x) ..... Xk+111! x

f.
81i1

= fiT q(aj8x)(g - Kg) = 0
[Xo.Xt ..... Xk+111! X

for IiI~ N - k. Subtracting, we see that

Hence there is some point x such that

8 1i1

8x l (p(8/8x)Kf - q(8/8x) Kg) = O.
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Now consider j =N. For Iii =N - k,

alii

ax i (p(ajax) PN- q(ajax) QN)

alii

= axi (p(ajax) Kf - q(ajax) Kg) = 0

at some point x. The first equality follows from the fact that lower degree
terms are differentiated away and the second by the above remark. Hence
p(ajax)PN- q(ajax) QN is a homogeneous polynomial of degree N - k, all
of whose (N - k)th order partials vanish at some point. It is, therefore, iden­
tically zero.

Now consider k ~j <N and assume that for t >j, p(ajax) PI ­

q(ajax) QI == O. Then for Iii =j - k, by this hypothesis,

alii

axi (p(ajax) Pj - q(ajax) Qj)

alii
= axi (p(ajax) Kf - q(ajax) Kg).

Again, this last expression is zero at some point and, as before, p(ajax) Pj ­

q(ajax) Qj == O. The result follows by reverse induction. •

3. KERGIN INTERPOLATION AT EQUALLY SPACED POINTS

ON THE UNIT CIRCLE

As before, let Kn,m be the Kergin polynomial interpolating xnym at the
n +m points (cos 2knj(n +m), sin 2knj(n +m)), 1~ k ~ n +m. An
examination of the formula of Theorem 2.4 reveals that

c:m )(xnym -Kn.m(x,y))

L n (x - cos Ok) n (y - sin Ok)' (3.1)
Scll,2"",n+mj keS k~S

lSI =n

where we have set Ok = 2knj(n + m). It is surprising that such a formidable
expression has pleasant properties. We set
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I, m = 0(4),

0, m =I (4),
X

-I, m = 2 (4),

0, m = 3 (4),

and calculate the generating function of these polynomials.

LEMMA 3.3. If t = (t I' t2 ), then

L Pn.m(x,y) t7t~ = Itld Td«xt l +yt 2)/ltl).
n+m=d

255

(3.2)

Prooif. We first compute" 2(n+m-ll(n+m)(xnym-K (x y» tn• ~n+m=d m n,m' 1

t~. By linearity, this expression equals

2d
-

1 L (d )(xtl)n (yt2)m -K (( d )(xt IY (yt2)m) (x,y)
n+m=d n n

= 2d- l«xt l +yt2)d -K«xt l +yt 2)d)(X,y».

We now apply Remark 2.1 to obtain

d

2d
-

1 n «xt l +yt2) - (t l cos fJk + t 2 sin fJk»
k=1

d

= 2d
-

1 Itl d n «xt l +yt2)/ltl- (t l cos fJk + t2 sin fJk)/ltl)
k=1

d

= 2d- I Itid n (cos ~ - (cos fJ cos fJk+ sin fJ sin fJk»'
k=1

Here, we have set cos ~ = (xt l +yt2)11tl, cos fJ = tl/it I, and sin fJ = t2/1tl.
Clearly, this last expression is equal to

d

2d
-

l ltl d n (cos ~ - cos(fJ - fJk»'
k=1

which, for brevity, we refer to as Q(~). Then

d

Q(~-fJ)=2d-lltld n (cos(fJ-~)-cOS(fJ-fJk»
k=1

= Itld (cos d(fJ -~) - cos dfJ),
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both sides being polynomials in cos(8 -;) with same degrees, zeros, and
leading coefficients. Hence

and our original sum is

Further,

l,m=:O(4),

0, m =: 1 (4),

-1, m =: 2 (4),

0, m =: 3 (4),

= Re(t j + it2)d

= Itld Re(tl/ltl + it2/lt\)d
= Itld Re(cos 8 +i sin 8)d,

where we have set cos8=tdltl and sin8=t2/ltl.
By de Moivre's theorem, this simplifies to

The result follows from the addition of the two sums. •

An immediate consequence of this calculation is that the generating
function sati&fies

00 00

L Pn.mt~t'; = L Itld Td«xt l +yt2)/lt\)
n,m=O d=O

We have made use of the fact that the generating function of the Chebyshev
polynomials is known to be

00

L Tk(x) t k = (1 - xt)/(1 - 2xt + t 2
).

k=O
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It follows from the generating function that the P",m satisfy the recurrence
relation

po•o = 1, PI,o=X, and PO,I =y.

The polynomials determined by this relation were studied by Reimer [6]. He
proves the following two theorems:

THEOREM 3.4 ([6]). For x 2+y2 ~ 1, IP",m(x,y)1 ~ ("~m).

THEOREM 3.5 ([6]). Among all polynomials of the form Q",m(x,y) =
21"+m-O(n+m)x,,ym + (lower degree terms), maxx 2+ y2<IIQ".m(x,y)! is least
for Q",m =P".m·

The following interesting identity is made use of in the proof of
Theorem 3.5:

LEMMA 3.6 ([6]). We have

p".m(cos 8, sin 8) = c:m)

cos(m + n) 8, m == 0 (4),

sin(m + n) 8, m == 1 (4),

-cos(m +n) 8, m == 2 (4),

-sin(m +n) 8, m == 3 (4).

Now by formula (3.2) for P",m' the following is immediate.

THEOREM 3.7. For x 2+y2 ~ 1,

Ix"ym -K".m(x,y)1 ~ 2- 1,,+m-o,

~ 2- In+m-2),

modd,

m even.

Also, for more general f, we substitute (3.1) into the error formula of
Theorem 2.4 to obtain

THEOREM 3.8. Iff is in CN+I(IR") and Kf is the Kergin interpolatnt to f
at the N + 1 points xk = (cos 2k7r/(N + 1), sin 2k7r/(N + 1», 0 ~ k ~ N, then,
on the unit disk,

1 (N + 1) II a
N

+1111(1- Kf)(x)1 ~ (N + I)! 2N- I ,,+fj'2;N+ I a ax" oylJ cx;
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Proof. By Theorem 2.4,
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1(1- Kf)(X)1

I(5 dN+'f)(X-xo,x-x" ...,X-XN)I
[x.O'··',XN'X]

= I ( ON+'f)
a+'f;N+l ~xo""'XN'X]oxaoyfJ

X L n (x - cos Ok) n (y - sin Ok) I
Sc:(O,I, ... ,Nj kES k"S

~I L (N+I)2-(N- ll II ON+'f115 11
"'" a+fJ=N+l a oxaoyfJ C1J (Xo, ... ,lI,v,X] •

The result follows from the computation

5 I = l/(N + I)!. I
[Xo, ... 'XN'X]

Now, by noticing that (o/aykW+~+k)xnym+k = (%xk)(n+:+k) x n+kym
and applying Theorem 2.5, it follows immediately that

PROPOSITION 3.9. We have

o 0
-P --Poyk n.m+k - oxk n+k,m'

Our last result is an explicit formula for Pn,m(x,y).

THEOREM 3.10. We have

Pn,m(x,y)

[m/2) +
_ ') (_I)k m n m-2kT(m-k) ( )
- k70 (n +m - k) 2kk! (m _ 2k)! Y n+m-k X

[n/2) +
_ ') ( I)k n m n- 2kT(n-k) ( )- :-::0 - (m + n - k) 2kk! (n _ 2k)! x m+n-k Y .

Proof. We prove the first formula; the second follows from the fact that
Pn.m(x, y) = Pm,n(y, x). We proceed by induction on m.

For m = 0, the right side reduces to Tn(x). But Pn,o(x,y) satisfies

Pn,o(x,y) = 2xPn_l ,o(x,y) -Pn- 2.0(x,y), Po,o = 1, Pl •O = x

and hence also equals Tn(x).
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Now assume that the equation holds for fixed m and all n. Then
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a [m/2) k m + n + 1

= ox k'2;o (-1) (n + 1+m - k) 2kk! (m - 2k)!

X ym- 2kT(m-k) (x)m+n+l-k
(m/2) m +n + 1

= k'2;o (_I)k (n + 1+m - k) 2kk!(m - 2k)!

X Ym-2krm+l-kl (x)n+m+l-k
a [(m+I)/2j m + n + 1

=oy f;o (-I)k(n+m+l-k)2kk!(m+I-2k)!

x ym+I- 2kT(m+l-kl (x)n+m+l-k .

Hence Pn.m +1 and the corresponding expressions differ by a polynomial in x
alone. That they are identically equal follows from the computational lemma
below. I

LEMMA 3.11. We have

Pn.m(x, 0) = 0, if m odd,

= [(_I)k (n +2k)j2kk! (n +k)] T~k~k(X), if m = 2k.

Proof The case of m odd follows immediately from the recurrence
relation. For even m, we use induction on n +m. The cases n +m = 0, 1 are
immediate. Now it is known that (see, e.g., Rivlin [7, p. 32]).

[r/2] ( .)
Tr(x)= L (-ryrj(r-j) r---:J 2r-2j-lxr-2j.

j=O J

Thus,

(-I)k(n+2k)T(kl ( )
(n +k) 2kk! n+k X

[n/2) n +2k
= (_I)k L (-I)j .

j=O n +k-J

X (n +;-j ) (n +~-2j ) 2n-2j-lxn-2j,

640/37/3-5

(3.3)
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and
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(2x)(-I)k (n - 1 + 2k) r<.k) ()
(n - 1+ k) 2kk! /I-l+k x

[(/1-1)/2] . n - 1 + 2k
= (_I)k 2:: (-1)1 .

j~O n-l +k-J

X(n - 1; k - j)C-1: k - 2j ) 2/1-2j -lx /I-2j , (3.4)

(-I)k+l(n-2+2k) (k)
(n - 2 + k) 2kk! T/I_Hk(X)

[(/I-2)I2J n 2+2k
= (_I)k + I 2:: (-I)j - .

j=O n - 2 + k - J

X(n - 2; k - j)(n - 2: k - 2j ) 2/1-2-2j -lx /I-2-2j , (3.5)

(_I)k (n +2(k- 1» k-I)

(n + k - 1) 2k- 1(k - I)! I;.+k-l(X)

[/I/2J 2 2k
= (_I)k L (-I)j n - + .

j=O n + k - 1 - J

X (n+k71-j)(n+~-=-11-2j)2/1-2j-lx/I-2j. (3.6)

By comparison of coefficients we see that (3.3) = (3.4) + (3.5) + (3.6) and
hence the given formula satisfies the recurrence relation. The result
follows. I
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