On Kergin Interpolation in the Disk

Len Bos

Department of Mathematics, University of Toronto, Toronto, Canada

Communicated by Carl de Boor
Received February 10, 1982; revised April 28, 1982

1. Introduction

Kergin [3] introduced a natural extension of the Newton form of single variable interpolation to the case of several variables. An explicit formula is given by Micchelli and Milman [5]. The main result of this paper is that if $K_{n, m}(x, y)$ is the Kergin interpolant of degree $n+m-1$ to the function $x^{n} y^{m}$ at the $n+m$ points $(\cos 2 k \pi /(n+m), \sin 2 k \pi /(n+m)), 1 \leqslant k \leqslant n+m$, and we set

$$
P_{n, m}=2^{n+m-1}\binom{n+m}{m}\left(x^{n} y^{m}-K_{n, m}\right)+\binom{n+m}{m}\left\{\begin{array}{r}
1, m \equiv 0(4) \\
0, m \equiv 1(4) \\
-1, m \equiv 2(4) \\
0, m \equiv 3(4)
\end{array}\right.
$$

then the $P_{n, m}$ satisfy the recurrence relation

$$
P_{n, m}=2 x P_{n-1, m}+2 y P_{n, m-1}-P_{n-2, m}-P_{n, m-2}
$$

with $P_{0,0}=1, P_{1,0}=x, P_{0,1}=y$, and hence are the "Chebyshev polynomials" for the disk studied by Reimer [6].

Reimer has shown that, in fact, $\left|P_{n, m}\right| \leqslant\binom{ n+m}{m}$ on $x^{2}+y^{2} \leqslant 1$ and we thus obtain the immediate corollary that

$$
\begin{array}{rlrl}
\left|x^{n} y^{m}-K_{n, m}(x, y)\right| & \leqslant 2^{-(n+m-1)}, \quad & & m \text { odd } \\
& \leqslant 2^{-(n+m-2)}, \quad & m \text { even }
\end{array}
$$

Further, we use the properties of Kergin interpolation to derive the property

$$
\frac{\partial^{k} P_{n, m+k}}{\partial y^{k}}=\frac{\partial^{k} P_{n+k, m}}{\partial x^{k}}
$$

Finally, an explicit formula

$$
\begin{aligned}
P_{n, m}(x, y)= & \sum_{k=0}^{[m / 2]}(-1)^{k} \frac{n+m}{(n+m-k) k!2^{k}(m-2 k)!} \\
& \times y^{m-2 k} T_{n+m-k}^{(m-k)}(x)
\end{aligned}
$$

where $T_{j}(x)=\cos \left(j \cos ^{-1} x\right)$ is the j th Chebyshev polynomial, is given.

2. Kergin Interpolation

We give the definition and basic properties of Kergin interpolation using the approach of Micchelli and Milman [5].

Let S_{N} denote the N-simplex, $S_{N}=\left\{\left(\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{N}\right): \varepsilon_{i} \geqslant 0, \sum \varepsilon_{i}=1\right\}$ and, for any sequence of $N+1$ points, $x_{0}, x_{1}, \ldots, x_{N} \in \mathbb{R}^{n}$, and continuous function $g: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}$, set

$$
\int_{\left[x_{0}, \ldots, x_{N}\right]} g=\int_{S_{N}} g\left(\sum_{k=0}^{N} \varepsilon_{k} x_{k}\right) d \varepsilon_{1} d \varepsilon_{2} \cdots d \varepsilon_{N}
$$

Define maps $\pi_{m}: C^{m}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{P}_{m}\left(\mathbb{R}^{n}\right)$, the polynomials of degree at most m, by

$$
\left(\pi_{m} f\right)(x)=\left(\int_{\left[x_{0}, \ldots, x_{m}\right]} d^{m} f\right)\left(x-x_{0}, x-x_{1}, \ldots, x-x_{m-1}\right)
$$

where $d^{m} f$ is the m th total derivative of f.
We note that in one variable, by the Hermite-Genocchi formula,

$$
\left(\pi_{m} f\right)(x)=f\left[x_{0}, x_{1}, \ldots, x_{m}\right]\left(x-x_{0}, x-x_{1}, \ldots, x-x_{m-1}\right),
$$

where $f\left[x_{0}, x_{1}, \ldots, x_{m}\right]$ is the m th divided difference of f at the given points.
Finally, define the map $K: C^{N}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{P}_{N}\left(\mathbb{R}^{n}\right)$ by

$$
K=\sum_{m=0}^{N} \pi_{m}
$$

Then $K f$ is the Kergin interpolant to f at $\left(x_{i}\right)_{0}^{N}$. We note that, as an operator, K is linear and continuous. In one variable $K f$ provides the Newton form of the interpolating polynomial.

Remark 2.1. If $f=g \circ \lambda$ for some g in $C^{N}(\mathbb{R})$ and some linear map $\lambda: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}$, then $K f$ is the one-variable polynomial which interpolates g at the points $\left(\lambda\left(x_{i}\right)\right)_{0}^{N}$, composed with λ.

Theorem 2.2 ([5]). If q is a homogeneous polynomial of degree k, $0 \leqslant k \leqslant N$, then

$$
\int_{\left[x_{0}, \ldots, x_{k}\right]} q(\partial / \partial x)(K f-f)=0
$$

Theorem 2.3 ([3]). If P is a polynomial of degree N that has the property of Kf in Theorem 2.2 for any ordering of the points $\left(x_{i}\right)_{0}^{N}$, then $P=K f$.

Theorem 2.4 (Milman and Micchelli [4]). If fis in $C^{N+1}\left(\mathbb{R}^{n}\right)$, then

$$
(f-K f)(x)=\left(\int_{\left[x_{0}, \ldots, x_{N}, x\right]} d^{N+1} f\right)\left(x-x_{0}, \ldots, x-x_{N}\right)
$$

Corollary. The map K is a projector.

THEOREM 2.5. If p and q are homogeneous polynomials of degree k, $0 \leqslant k$, and $p(\partial / \partial x) f=q(\partial / \partial x) g$ for some functions f, g in $C^{N}\left(\mathbb{R}^{n}\right)$, then $p(\partial / \partial x) K f=q(\partial / \partial x) K g$.

Proof. If $k>N$, both sides are zero, so we assume that $k \leqslant N$. Suppose that $K f=P_{0}+P_{1}+\cdots+P_{N}$ and $K g=Q_{0}+Q_{1}+\cdots+Q_{N}$ are the homogeneous decompositions of $K f$ and $K g$, respectively. We shall show that $p(\partial / \partial x) P_{j}=q(\partial / \partial x) Q_{j}, 0 \leqslant j \leqslant N$.

Using usual multi-index notation, note that, by Theorem 2.2,

$$
\begin{aligned}
& \int_{\left\{x_{0}, x_{1}, \ldots, x_{k+1| |]}\right.} \frac{\partial^{|i|}}{\partial x^{i}} p(\partial / \partial x)(f-K f) \\
& \quad=\int_{\left[x_{0}, x_{1}, \ldots, x_{k+| | 1]}\right.} \frac{\partial^{|i|}}{\partial x^{i}} q(\partial / \partial x)(g-K g)=0
\end{aligned}
$$

for $|i| \leqslant N-k$. Subtracting, we see that

$$
\int_{\left[x_{0}, x_{1}, \ldots, x_{k+|i|]}\right.} \frac{\partial^{|i|}}{\partial x^{i}}(p(\partial / \partial x) K f-q(\partial / \partial x) K g)=0
$$

Hence there is some point x such that

$$
\frac{\partial^{|i|}}{\partial x^{i}}(p(\partial / \partial x) K f-q(\partial / \partial x) K g)=0
$$

Now consider $j=N$. For $|i|=N-k$,

$$
\begin{aligned}
\frac{\partial^{|i|}}{\partial x^{i}} & \left(p(\partial / \partial x) P_{N}-q(\partial / \partial x) Q_{N}\right) \\
& =\frac{\partial^{|i|}}{\partial x^{i}}(p(\partial / \partial x) K f-q(\partial / \partial x) K g)=0
\end{aligned}
$$

at some point x. The first equality follows from the fact that lower degree terms are differentiated away and the second by the above remark. Hence $p(\partial / \partial x) P_{N}-q(\partial / \partial x) Q_{N}$ is a homogeneous polynomial of degree $N-k$, all of whose $(N-k)$ th order partials vanish at some point. It is, therefore, identically zero.

Now consider $k \leqslant j<N$ and assume that for $t>j, p(\partial / \partial x) P_{t}-$ $q(\partial / \partial x) Q_{t} \equiv 0$. Then for $|i|=j-k$, by this hypothesis,

$$
\begin{aligned}
\frac{\partial^{|i|}}{\partial x^{i}} & \left(p(\partial / \partial x) P_{j}-q(\partial / \partial x) Q_{j}\right) \\
& =\frac{\partial^{|i|}}{\partial x^{i}}(p(\partial / \partial x) K f-q(\partial / \partial x) K g)
\end{aligned}
$$

Again, this last expression is zero at some point and, as before, $p(\partial / \partial x) P_{j}-$ $q(\partial / \partial x) Q_{j} \equiv 0$. The result follows by reverse induction.

3. Kergin Interpolation at Equally Spaced Points on the Unit Circle

As before, let $K_{n, m}$ be the Kergin polynomial interpolating $x^{n} y^{m}$ at the $n+m$ points $(\cos 2 k \pi /(n+m), \quad \sin 2 k \pi /(n+m)), \quad 1 \leqslant k \leqslant n+m$. An examination of the formula of Theorem 2.4 reveals that

$$
\begin{align*}
& \binom{n+m}{m}\left(x^{n} y^{m}-K_{n, m}(x, y)\right) \\
& \quad=\sum_{\substack{s \subset\{1,2, \ldots, n+m\} \\
|S|=n}} \prod_{k \in S}\left(x-\cos \theta_{k}\right) \prod_{k \notin S}\left(y-\sin \theta_{k}\right) \tag{3.1}
\end{align*}
$$

where we have set $\theta_{k}=2 k \pi /(n+m)$. It is surprising that such a formidable expression has pleasant properties. We set

$$
\begin{align*}
P_{n, m}(x, y)= & 2^{(n+m-1)}\binom{n+m}{m}\left(x^{n} y^{m}-K_{n, m}(x, y)\right)+\binom{n+m}{m} \\
& \times\left\{\begin{array}{c}
1, m \equiv 0(4) \\
0, m \equiv 1(4) \\
-1, m \equiv 2(4) \\
0, m \equiv 3(4)
\end{array}\right. \tag{3.2}
\end{align*}
$$

and calculate the generating function of these polynomials.
Lemma 3.3. If $\mathbf{t}=\left(t_{1}, t_{2}\right)$, then

$$
\sum_{n+m=d} P_{n, m}(x, y) t_{1}^{n} t_{2}^{m}=|\mathfrak{t}|^{d} T_{d}\left(\left(x t_{1}+y t_{2}\right) /|\mathbf{t}|\right) .
$$

Proof. We first compute $\sum_{n+m=d} 2^{(n+m-1)}\binom{n+m}{m}\left(x^{n} y^{m}-K_{n, m}(x, y)\right) t_{1}^{n}$ t_{2}^{m}. By linearity, this expression equals

$$
\begin{aligned}
& 2^{d-1} \sum_{n+m=d}\binom{d}{n}\left(x t_{1}\right)^{n}\left(y t_{2}\right)^{m}-K\left(\binom{d}{n}\left(x t_{1}\right)^{n}\left(y t_{2}\right)^{m}\right)(x, y) \\
& \quad=2^{d-1}\left(\left(x t_{1}+y t_{2}\right)^{d}-K\left(\left(x t_{1}+y t_{2}\right)^{d}\right)(x, y)\right)
\end{aligned}
$$

We now apply Remark 2.1 to obtain

$$
\begin{aligned}
2^{d-1} & \prod_{k=1}^{d}\left(\left(x t_{1}+y t_{2}\right)-\left(t_{1} \cos \theta_{k}+t_{2} \sin \theta_{k}\right)\right) \\
& \left.=2^{d-1}|\mathbf{t}|^{d} \prod_{k=1}^{d}\left(\left(x t_{1}+y t_{2}\right) /|\mathbf{t}|-\left(t_{1} \cos \theta_{k}+t_{2} \sin \theta_{k}\right) /|\mathbf{t}|\right)\right) \\
& =2^{d-1}|\mathbf{t}|^{d} \prod_{k=1}^{d}\left(\cos \phi-\left(\cos \theta \cos \theta_{k}+\sin \theta \sin \theta_{k}\right)\right)
\end{aligned}
$$

Here, we have set $\cos \phi=\left(x t_{1}+y t_{2}\right) /|t|, \cos \theta=t_{1} /|\mathbf{t}|$, and $\sin \theta=t_{2} /|\mathbf{t}|$.
Clearly, this last expression is equal to

$$
2^{d-1}|t|^{d} \prod_{k=1}^{d}\left(\cos \phi-\cos \left(\theta-\theta_{k}\right)\right)
$$

which, for brevity, we refer to as $Q(\phi)$. Then

$$
\begin{aligned}
Q(\phi-\theta) & =2^{d-1}|\mathbf{t}|^{d} \prod_{k=1}^{d}\left(\cos (\theta-\phi)-\cos \left(\theta-\theta_{k}\right)\right) \\
& =|\mathbf{t}|^{d}(\cos d(\theta-\phi)-\cos d \theta)
\end{aligned}
$$

both sides being polynomials in $\cos (\theta-\phi)$ with same degrees, zeros, and leading coefficients. Hence

$$
Q(\phi)=|\mathbf{t}|^{d}(\cos d \phi-\cos d \theta)
$$

and our original sum is

$$
|\mathbf{t}|^{d}\left(T_{d}\left(\left(x t_{1}+y t_{2}\right) /|\mathbf{t}|\right)-T_{d}\left(t_{1} /|\mathbf{t}|\right)\right)
$$

Further,

$$
\begin{aligned}
& \sum_{n+m=d} t_{1}^{n} t_{2}^{m}\binom{d}{n}\left\{\begin{array}{r}
1, m \equiv 0(4) \\
0, m \equiv 1(4) \\
-1, m \equiv 2(4) \\
0, m \equiv 3(4)
\end{array}\right. \\
& =\operatorname{Re}\left(t_{1}+i t_{2}\right)^{d} \\
& =|\mathbf{t}|^{d} \operatorname{Re}\left(t_{1} /|\mathbf{t}|+i t_{2} /|\mathbf{t}|\right)^{d} \\
& =|\mathbf{t}|^{d} \operatorname{Re}(\cos \theta+i \sin \theta)^{d}
\end{aligned}
$$

where we have set $\cos \theta=t_{1} /|\mathbf{t}|$ and $\sin \theta=t_{2} /|\mathbf{t}|$.
By de Moivre's theorem, this simplifies to

$$
|\mathbf{t}|^{d} \cos d \theta=|\mathbf{t}|^{d} T_{d}\left(t_{1} /|\mathbf{t}|\right) .
$$

The result follows from the addition of the two sums.
An immediate consequence of this calculation is that the generating function satisfies

$$
\begin{aligned}
& \sum_{n, m=0}^{\infty} P_{n, m} t_{1}^{n} t_{2}^{m}=\sum_{d=0}^{\infty}|\mathbf{t}|^{d} T_{d}\left(\left(x t_{1}+y t_{2}\right) /|\mathbf{t}|\right) \\
& \quad=\left(1-\left(x t_{1}+y t_{2}\right)\right) /\left(1-2\left(x t_{1}+y t_{2}\right)+|\mathbf{t}|^{2}\right)
\end{aligned}
$$

We have made use of the fact that the generating function of the Chebyshev polynomials is known to be

$$
\sum_{k=0}^{\infty} T_{k}(x) t^{k}=(1-x t) /\left(1-2 x t+t^{2}\right)
$$

It follows from the generating function that the $P_{n, m}$ satisfy the recurrence relation

$$
\begin{aligned}
& P_{n, m}=2 x P_{n-1, m}+2 y P_{n, m-1}-P_{n-2, m}-P_{n, m-2}, \\
& P_{0,0}=1, \quad P_{1,0}=x, \quad \text { and } \quad P_{0,1}=y .
\end{aligned}
$$

The polynomials determined by this relation were studied by Reimer [6]. He proves the following two theorems:

Theorem 3.4 ([6]). For $x^{2}+y^{2} \leqslant 1,\left|P_{n, m}(x, y)\right| \leqslant\binom{ n+m}{m}$.
Theorem 3.5 ([6]). Among all polynomials of the form $Q_{n, m}(x, y)=$ $2^{(n+m-1)}\left({ }^{n+m}\right) x^{n} y^{m}+($ lower degree terms $), \max _{x^{2}+y^{2}<1}\left|Q_{n, m}(x, y)\right|$ is least for $Q_{n, m}=P_{n, m}$.

The following interesting identity is made use of in the proof of Theorem 3.5:

Lemma 3.6 ([6]). We have

$$
P_{n, m}(\cos \theta, \sin \theta)=\binom{n+m}{m}\left\{\begin{aligned}
\cos (m+n) \theta, m \equiv 0(4) \\
\sin (m+n) \theta, m \equiv 1(4) \\
-\cos (m+n) \theta, m \equiv 2(4) \\
-\sin (m+n) \theta, m \equiv 3(4)
\end{aligned}\right.
$$

Now by formula (3.2) for $P_{n, m}$, the following is immediate.
Theorem 3.7. For $x^{2}+y^{2} \leqslant 1$,

$$
\begin{aligned}
\left|x^{n} y^{m}-K_{n, m}(x, y)\right| & \leqslant 2^{-(n+m-1)}, & & m \text { odd }, \\
& \leqslant 2^{-(n+m-2)}, & & m \text { even } .
\end{aligned}
$$

Also, for more general f, we substitute (3.1) into the error formula of Theorem 2.4 to obtain

Theorem 3.8. If f is in $C^{N+1}\left(\mathbb{R}^{n}\right)$ and $K f$ is the Kergin interpolatnt to f at the $N+1$ points $\mathbf{x}_{k}=(\cos 2 k \pi /(N+1), \sin 2 k \pi /(N+1)), 0 \leqslant k \leqslant N$, then, on the unit disk,

$$
|(f-K f)(\mathbf{x})| \leqslant \frac{1}{(N+1)!2^{N-1}} \sum_{\alpha+\beta=N+1}\binom{N+1}{\alpha}\left\|\frac{\partial^{N+1} f}{\partial x^{\alpha} \partial y^{\beta}}\right\|_{\infty}
$$

Proof. By Theorem 2.4,

$$
\begin{aligned}
\mid(f- & K f)(\mathbf{x}) \mid \\
= & \left|\left(\int_{\left[\mathbf{x}_{0}, \ldots, \mathbf{x}_{N}, \mathbf{x}\right]} d^{N+1} f\right)\left(\mathbf{x}-\mathbf{x}_{0}, \mathbf{x}-\mathbf{x}_{1}, \ldots, \mathbf{x}-\mathbf{x}_{N}\right)\right| \\
= & \left\lvert\, \sum_{\alpha+\beta=N+1}\left(\int_{\left[\mathbf{x}_{0}, \ldots, \mathbf{x}_{N}, \mathbf{x}\right]} \frac{\partial^{N+1} f}{\partial x^{\alpha} \partial y^{\beta}}\right)\right. \\
& \times \sum_{s \in\{0,1, \ldots, N]} \prod_{k \in S}\left(x-\cos \theta_{k}\right) \prod_{k \notin S}\left(y-\sin \theta_{k}\right) \mid \\
\leqslant & \left|\sum_{\alpha+\beta=N+1}\binom{N+1}{\alpha} 2^{-(N-1)}\left\|\frac{\partial^{N+1} f}{\partial x^{\alpha} \partial y^{\beta}}\right\|_{\infty} \int_{\left[\mathbf{x}_{0}, \ldots, \mathbf{x}_{N}, \mathbf{x}\right]} 1\right|
\end{aligned}
$$

The result follows from the computation

$$
\int_{\left[\mathbf{x}_{0}, \ldots, \mathbf{x}_{N}, \mathbf{x}\right]} 1=1 /(N+1)!
$$

Now, by noticing that $\left(\partial / \partial y^{k}\right)\left({ }^{n+m+k}{ }_{n}\right) x^{n} y^{m+k}=\left(\partial / \partial x^{k}\right)\binom{n+m+k}{m} x^{n+k} y^{m}$ and applying Theorem 2.5, it follows immediately that

Proposition 3.9. We have

$$
\frac{\partial}{\partial y^{k}} P_{n, m+k}=\frac{\partial}{\partial x^{k}} P_{n+k, m}
$$

Our last result is an explicit formula for $P_{n, m}(x, y)$.
Theorem 3.10. We have

$$
\begin{aligned}
P_{n, m} & (x, y) \\
& =\sum_{k=0}^{[m / 2]}(-1)^{k} \frac{m+n}{(n+m-k) 2^{k} k!(m-2 k)!} y^{m-2 k} T_{n+m-k}^{(m-k)}(x) \\
& =\sum_{k=0}^{[n / 2]}(-1)^{k} \frac{n+m}{(m+n-k) 2^{k} k!(n-2 k)!} x^{n-2 k} T_{m+n-k}^{(n-k)}(y) .
\end{aligned}
$$

Proof. We prove the first formula; the second follows from the fact that $P_{n, m}(x, y)=P_{m, n}(y, x)$. We proceed by induction on m.

For $m=0$, the right side reduces to $T_{n}(x)$. But $P_{n, 0}(x, y)$ satisfies

$$
P_{n, 0}(x, y)=2 x P_{n-1,0}(x, y)-P_{n-2,0}(x, y), \quad P_{0,0}=1, \quad P_{1,0}=x
$$

and hence also equals $T_{n}(x)$.

Now assume that the equation holds for fixed m and all n. Then

$$
\begin{aligned}
\frac{\partial P_{n, m+1}}{\partial y}= & \frac{\partial P_{n+1, m}}{\partial x} \\
= & \frac{\partial}{\partial x} \sum_{k=0}^{[m / 2]}(-1)^{k} \frac{m+n+1}{(n+1+m-k) 2^{k} k!(m-2 k)!} \\
& \times y^{m-2 k} T_{m+n+1-k}^{(m-k)}(x) \\
= & \sum_{k=0}^{[m / 2]}(-1)^{k} \frac{m+n+1}{(n+1+m-k) 2^{k} k!(m-2 k)!} \\
& \times y^{m-2 k} T_{n+m+1-k}^{(m+1-k)}(x) \\
= & \frac{\partial}{\partial y} \sum_{k=0}^{[(m+1) / 2]}(-1)^{k} \frac{m+n+1}{(n+m+1-k) 2^{k} k!(m+1-2 k)!} \\
& \times y^{m+1-2 k} T_{n+m+1-k}^{(m+1-k)}(x) .
\end{aligned}
$$

Hence $P_{n, m+1}$ and the corresponding expressions differ by a polynomial in x alone. That they are identically equal follows from the computational lemma below.

Lemma 3.11. We have

$$
\begin{aligned}
P_{n, m}(x, 0) & =0, & & \text { if } m \text { odd } \\
& =\left[(-1)^{k}(n+2 k) / 2^{k} k!(n+k)\right] T_{n+k}^{(k)}(x), & & \text { if } m=2 k .
\end{aligned}
$$

Proof. The case of m odd follows immediately from the recurrence relation. For even m, we use induction on $n+m$. The cases $n+m=0,1$ are immediate. Now it is known that (see, e.g., Rivlin [7, p. 32]).

$$
T_{r}(x)=\sum_{j=0}^{[r / 2]}(-1)^{j} r /(r-j)\binom{r-j}{j} 2^{r-2 j-1} x^{r-2 j}
$$

Thus,

$$
\begin{align*}
& \frac{(-1)^{k}(n+2 k)}{(n+k) 2^{k} k!} T_{n+k}^{(k)}(x) \\
& \quad=(-1)^{k} \sum_{j=0}^{[n / 2]}(-1)^{j} \frac{n+2 k}{n+k-j} \\
& \quad \times\binom{ n+k-j}{j}\binom{n+k-2 j}{k} 2^{n-2 j-1} x^{n-2 j}, \tag{3.3}
\end{align*}
$$

$$
\begin{align*}
& \frac{(2 x)(-1)^{k}(n-1+2 k)}{(n-1+k) 2^{k} k!} T_{n-1+k}^{(k)}(x) \\
& =(-1)^{k} \sum_{j=0}^{[(n-1) / 2]}(-1)^{j} \frac{n-1+2 k}{n-1+k-j} \\
& \quad \times\binom{ n-1+k-j}{j}\binom{n-1+k-2 j}{k} 2^{n-2 j-1} x^{n-2 j} \tag{3.4}\\
& \frac{(-1)^{k+1}(n-2+2 k)}{(n-2+k) 2^{k} k!} T_{n-2+k}^{(k)}(x) \\
& \quad=(-1)^{k+1} \sum_{j=0}^{I(n-2) / 2]}(-1)^{j} \frac{n-2+2 k}{n-2+k-j} \\
& \quad \times\binom{ n-2+k-j}{j}\binom{n-2+k-2 j}{k} 2^{n-2-2 j-1} x^{n-2-2 j} \tag{3.5}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{(-1)^{k}(n+2(k-1))}{(n+k-1) 2^{k-1}(k-1)!} T_{n+k-1}^{(k-1)}(x) \\
& \quad=(-1)^{k} \sum_{j=0}^{[n / 2]}(-1)^{j} \frac{n-2+2 k}{n+k-1-j} \\
& \quad \times\binom{ n+k-1-j}{j}\binom{n+k-1-2 j}{k-1} 2^{n-2 j-1} x^{n-2 j} . \tag{3.6}
\end{align*}
$$

By comparison of coefficients we see that (3.3) $=(3.4)+(3.5)+(3.6)$ and hence the given formula satisfies the recurrence relation. The result follows.

Acknowledgments

The author would like to thank Pierre Milman and Thomas Bloom for many helpful and interesting conversations.

References

1. E. W. Cheney, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
2. O. D. Kellogg, On bounded polynomials in several variables, Math. Z. 27 (1928), 55-64.
3. P. Kergin, A natural interpolation of C^{K} functions, J. Approx. Theory 29 (4) (1980), 278-293.
4. C. Micchelli, A constructive approach to Kergin interpolation in \mathbb{R}^{k} : Multivariate B splines and Lagrange interpolation, Rocky Mountain J. Math. 10 (3) (1980), 485-497.
5. C. Micchelli and P. Milman, A formula for Kergin interpolation in \mathbb{R}^{k}, J. Approx. Theory 29 (4) (1980), 294-296.
6. M. Reimer, On multivariate polynomials of least deviation from zero on the unit ball, Math. Z. 153 (1977), 51-58.
7. T. J. Rivlin, "The Chebyshev Polynomials," Wiley-Interscience, New York, 1974.
